A Review on 1, 2, 4 - Triazoles

INTRODUCTION

In the last few decades, the chemistry of 1, 2, 4-triazoles and their fused heterocyclic derivatives have received considerable attention owing to their synthetic and effective biological importance. 1, 2, 4-triazole moiety has been incorporated into a wide variety of therapeutically interesting drug candidates including antifungal, antibacterial, analgesics and anti-inflammatory, antineoplastic, antiviral, sedatives, anxiolytics, anti-convulsants, antihistaminics, CNS stimulants and other activities. [1-14]

Triazole units have attracted considerable attention in fields, such as medicinal and agrochemical research as well as in the material sciences due to their unique structure and properties. [15]

Some of the modern-day drugs with triazole nucleus are as follows:

- Fluconazole
- Itraconazole
- Terconazole
- Posaconazole
- Voriconazole (the powerful azole antifungal agents), Ribavirin (antiviral agent), non-nucleoside reverse transcriptase inhibitors, Anastrozole, Letrozole, Virazole (antineoplastic, nonsteroidal competitive aromatase inhibitors), Alprazolam, Triazolam, Estazolam (anxiolytic, hypnotic, sedative, tranquilizer), Rizatriptan (antimigrane agent), Trazodone (antidepressant, anxiolytic), Nefazodone (antidepressant, 5-HT2A-antagonist), Trapidil (hypotensive), Rilmazafon (hypnotic, anxiolytic, used in the case of neurotic insomnia), Benatradin (diuretic) and Etoperidone (antidepressant). In addition to these important biological applications, mercapto- 1, 2, 4-triazoles are also of great utility in preparative organic chemistry, viz, in the presence of various reagents, undergo different types of reactions to yield other heterocyclic compounds, e.g., thiazolotriazoles, triazolothiadiazoles, triazolothiazines, triazolothiazepines and triazolothiadiazines.

Chemistry and Structure Activity Relationships

1, 2, 4-triazole is one of a pair of isomeric chemical compounds 1 (a and b) with molecular formula C2H3N3 called triazoles, which have a five-membered ring of two carbon atoms and three nitrogen atoms. 1, 2, 4-triazole is a basic aromatic heterocycle.

KEYWORDS: 1, 2, 4 - triazoles, Antifungal, Antineoplastic, Antibacterial, Fluconazole, Itraconazole.
1-substituted-1, 2, 4-triazole

Cristalli et al [16] reported the synthesis of a series of erythro-1-(2-hydroxy-3-nonyl) azole derivatives (2) which were evaluated for adenosine deaminase (ADA) inhibitory activity, in order to introduce simplifications in the ADA inhibitor.

![Chemical Structure](image1)

Compound (2a) was the most potent ADA inhibitor in the series with $K_i=0.3\mu M$.

Pautus et al [17] prepared a series of 4-alkyl/aryl – substituted-1-[benzofuran-2-yl-phenylmethyl]-1H-triazoles (3) and evaluated their inhibitory activity against CYP26A1 ($IC_{50}=4.5$ and $7\mu M$ respectively, using a MCF-7 cell based assay.

![Chemical Structure](image2)

In this series, 4-ethyl and 4- phenyl-1, 2, 4- triazole derivatives displayed inhibitory activity comparable with that of the CYP26 inhibitor liarozole, $IC_{50}=7\mu M$.

A series of 1-(1H-1, 2, 4-triazol-1-yl)-2-(2, 4-difluorophenyl)-3-[(4-substituted phenyl)piperazin-1-yl]-propan-2-ols (5) have been designed and synthesized by Sun et al [18] and were tested against 6 human pathogenic fungi.

![Chemical Structure](image3)

Compound 6 showed high activity against *Candida albicans*, *Candida parapsilosis* and *Candida krusei* as compared to fluconazole, whereas, 5g showed higher activity against *Torulopsis glabrata* than fluconazole. Compound 5(a, c, d, e, f) exhibited higher activities against *C. parapsilosis* than fluconazole.

3-Substituted-1, 2, 4-Triazole

Ladduwahetty et al [19] reported the preparation of a series of N-heteroaryl piperidine ether-based human NK1 antagonists. Two of the compounds (3-[(2S,3S)-3-[[3, 5-bis (trifluoromethyl) phenyl]methyl]oxy]-2-phenylpiperidino)methyl]-1,2,4-triazole (8) and 5-[(2S,3S)-3-(((3,5-bis (trifluoromethyl)-phenyl)methyl) oxy) -2-phenylpiperidino) methyl]-3-oxo-1,2,4-triazolone (9), in particular, are orally bioavailable and exhibited significant improvements in potency, both *in vitro* and *in vivo*, over the lead carboxamidomethyl)- piperidine ether (7).
4-Substituted-1, 2, 4-Triazole

A series of 1- and 4- substituted 1, 2, 4-triazoles have been studied by Ainsworth et al [20] for convulsant and anticonvulsant activity by both the maximal electroshock seizure and subcutaneous pentylene tetrazole seizure tests in rats.

Of the p-substituted phenyl compounds (10a-d) 1-p-chlorophenyl-1,2,4-triazole is the most active against electroshock seizure but has weak activity against pentylene tetrazole o-tolyl (11a) and o-chlorophenyl (11b) were convulsants and o-methoxyphenyl (11c) was an anticonvulsant even at high dose levels.

Sternfeld et al [21] optimized a series of 5-(heterocyclyl) tryptamines led to the identification of the symmetrically substituted, N-4 linked 1,2,4-triazoles as the best indole C-5 substituent for 5-HT_{1D} receptor affinity and selectivity.

The triazole analog (12) is the most potent and selective, orally bioavailable, 5-HT_{1D} receptor agonist identified to date, showing an order of magnitude greater potency than the clinical compound sumatriptan(13) with improved subtype selectivity.

A Series of 3-benzylsulfanyl derivatives of 1, 2, 4-triazole and 4-methyl-1, 2, 4-triazole were synthesized by alkylation of starting triazole-3-thiol with appropriately substituted benzylhalide by Klimesova et al [5]. All members of the set were evaluated for in vitro antimycobacterial activity.
against *Mycobacterium tuberculosis*, *M. avium*, and two strains of *M. kansasii*.

3-(2, 4-dinitrobenzylsulfanyl)-1, 2, 4-triazole (14f) and 3-(3, 5-dinitrobenzylsulfanyl)-1, 2, 4-triazole (14g) are the most active compounds in the set, their activities ranging from 32 to 500 μmol/l.

1, 3-disubstituted-1, 2, 4-triazole

Witkowski *et al.* [22] reported the preparation and evaluation of 1st synthetic broad-spectrum, noninterferon-inducing, antiviral agent 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (15) against variety of both RNA and DNA viruses in tissue culture.

Reproducible broad spectrum antiviral activity both *in vitro* and *in vivo* at nontoxic dosage levels was shown by (15).

The triazole nucleoside derivatives 1-(5'-O-sulfamoyl-β-D-ribofuranosyl)-1, 2, 4-triazole-3-carboxamide (16), 1-(5'-O-sulfamoyl- β-D-ribofuranosyl)-1, 2, 4-triazole-3-thiocarboxamide (17), 1-(5'-O-sulfamoyl-β-D-ribofuranosyl)-1, 2, 4-triazole-3-carbonitrile (18), were synthesized by Kini *et al.* [23].

All three compounds showed significant activity *in vitro* while (16) showed significant activity *in vivo* against *Leishmania donovani* and *Trypanosoma brucei*.

1, 4-Disubstituted-1, 2, 4-Triazole

2-Hydroxyphenacyl azole (19) and 2-hydroxyphenacyl azolium compounds (20a and 20b) have been described as a new class of azole antifungals by Emami *et al.* [24]. Most target compounds showed significant *in vitro* antifungal
activities against tested fungi (Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum) with low MICs values included in the range of 0.25–32 \(\text{lg/mL} \) comparable to reference drug fluconazole.

2-hydroxyphenacyl-azoles (19) and 2-hydroxyphenacetyl-4-aminotriazoliums (20a and 20b) may be considered promising for the development of new antifungal agents with their biological activity and toxicity screening.

3, 4-Disubstituted-1, 2, 4-Triazole

Zhang et al [8] described the synthesis and biological evaluation of a series of tubulin polymerization inhibitors that contain the 1, 2, 4-triazole ring to retain the bioactive configuration afforded by the cis double bond in combretastatin A-4 (CA-4).

Several of the compounds exhibited potent tubulin polymerization inhibitory activity as well as cytotoxicity against a variety of cancer cells including multi-drug-resistant (MDR) cancer cell lines. Attachment of the \(\text{N}-\text{methyl-5-indolyl moiety to the 1, 2, 4-triazole core, as exemplified by compound (21), conferred optimal properties among this series.} \)

Khanmohammadi et al [25] synthesized a series of new Schiff base hydrazones (22) by condensation reaction of 4-amino-3-((4-pyridine)-5-mercapto-1,2,4-triazole with various aldehydes and/or dialdehydes. All the synthesized compounds were assayed for antibacterial (Escherichia coli and Staphylococcus aureus) and antifungal (Candida albicans) activities by disc diffusion method.

Compounds 22 a-e containing 4-Cl, 4-Me, 4-OMe, 2,4-di-Cl and 2-OH substituted phenyl moiety, respectively, showed good inhibition against \(S. \text{ aureus} \) as compare to standard drugs.

3, 5-disubstituted-1, 2, 4-Triazole

Akerblom et al [26] synthesized a series of 5-(5-nitro-2-furyl)-1, 2, 4-triazole (23) and their activity as potential urinary tract antibacterial agents was tested. Many of the compounds showed a higher antibacterial activity than nitrofurantoin especially against gram-ve bacteria.
chlorinated derivatives had the best effect which was comparable with diazepam.

![Chemical Structure](image1)

\(a, X=\text{Cl} \)

(24)

1, 5-Disubstituted-1, 2, 4-Triazole

In continuation of their previous work on eosinophilia inhibitors, Akahoshi et al [28] synthesized an additional series of inhibitors, which consisted of 5-amino-1-[(methylamino) thiocarbonyl]-1H-1,2,4-triazole derivatives (25) and a newly developed series of 1,2,4-triazolo[1,5-a]-1,3,5-triazine derivatives (26).

![Chemical Structure](image2)

(25)

(26)

\(\text{R}_1 \quad \text{R}_2 \quad \text{R}_3 \)

a. \(\text{CH}_3 \quad \text{H} \quad \text{C}_6\text{H}_5(4\text{-Cl}) \)

In the triazolo-[1,5-a]triazine series, 2-(4-chlorophenyl)-6-methyl-1,2,4-triazolo[1,5-a]-1,3,5-triazine-7(6H)-thione (26a) was highly potent, and when given orally it had an ID\(_{50}\) value of 0.3 mg/kg, which is comparable to that of GCC-AP0341 (25).

A series of 1-(3', 4', 5'-trimethoxyphenyl)-5-aryl-1, 2, 4-triazoles (27), designed as cis-restricted combretastatin analogues, were synthesized and evaluated for antiproliferative activity, inhibitory effects on tubulin polymerization, cell cycle effects, and apoptosis induction by Romagnoli et al [29]. Their activity was greater than, or comparable with, that of the reference compound.

![Chemical Structure](image3)

(27)

The most active compounds 27a and 27b were arresting the growth in the G2/M phase of the cell cycle in a concentration dependent manner. Compound 27b was also shown to have potential antivascular activity, since it induced endothelial cell shape change \textit{in vitro} and disrupted the sprouting of endothelial cells in the chick aortic ring assay.

4, 5-Disubstituted-1, 2, 4-Triazole

Zhu et al [12] identified 4-methyl-5-phenyl-(1, 2, 4) triazoles (28, 29) as selective inhibitors of 11β-hydroxysteroid dehydrogenase type1 (11β-HSD1) and found them active \textit{in vitro} and \textit{in vivo} mouse pharmacodynamic model.

![Chemical Structure](image4)

(28)

(29)
It was found that pharmacodynamic activity of compound 28 was much improved compared to the earlier one. Unfortunately this analog was a full and potent pregnane X receptor (PXR) agonist, suggesting CYP450 induction might be an issue at pharmacologically relevant exposures. SAR studies revealed that sulfone substitution in compound 29(d,e) helped to decrease PXR activity. It was also found that small group substitution at ‘o’ position and larger group substitution at ‘p’ position increase in vivo activity. By introducing polar group at the end of the molecule PXR activity can be success fully eliminated.

1, 3, 5-trisubstituted-1, 2, 4-triazole

Reitz et al [30] reported some novel 1H-1, 2, 4-triazole analogs in which the biphenylmethyl group was attached to carbon and the butyl group was attached to the adjacent nitrogen were found to be potent angiotensin II receptor antagonists. The in vivo properties of dibutyl analog SC-51757(30) was found to be similar to SC-50560(31).

![Image](30)

Kim et al [31] synthesized a series of 2- pyridinyl-[1, 2, 4]-triazoles (32) and evaluated their ALK5 (Activin like kinase 5) inhibitory properties.

![Image](32)

In the entire series, compound 32b showed significant ALK5 inhibition.

2, 3, 5-Trisubstituted-1, 2, 4-Triazole

The synthesis of several 3-alkyl-5-(5-nitro-2-furyl)-l, 2, 4-triazoles (33) were described by Burch et al [32].

![Image](33)

Most of the compounds possessed broad antibacterial activity in vitro against both gram positive and gram negative bacteria, except Pseudomonas aeruginosa. Compounds with the above substituents showed maximum effectivity.

![Image](34)

Chen et al [33] described the synthesis of 1-alkyl-3-dialkylamino-5-phenyltriazoles (34) as major products. Significant binding affinity on the human CRF1 receptor was observed with this series of compounds.

Among them, 1- methyl-3-[N-bis(cyclopropyl)methyl-N-propylamino]-5-(2,4-dichlorophenyl)-1H-[1, 2, 4]triazole (34) had the best binding affinity for the CRF1 receptor (Ki=9 nM).

3, 4, 5-trisubstituted-1, 2, 4-triazole

Gall et al [34] prepared a series of 2-[[alkylaminomethyl]-4H-1, 2, 4-triazole-4-yl] benzophenones, which were found to possess potential sedative and muscle relaxing activity which might function, in part as prodrugs of triazolobenzodiazepines. In addition, compound 35a
antagonized the clonic convulsions induced in mice by the administration of pentylene tetrazole.

\[
\begin{array}{cccc}
X & R_1 & R_2 & R_3 \ N \ S \ O \\
\hline
a. N & CH_3 & - & H \ Cl \ N(CH_3)_2 \ O \\
b. N & CH_3 & - & Cl \ Cl \ N(CH_3)_2 \ O \\
c. N & CH_3 & - & H \ Cl \ C-N-C_6H_5 \ O \\
d. N & CH_3 & - & H \ Cl \ - \ O \\
e. N & CH_3 & - & H \ Cl \ - \ O \\
f. N & CH_3 & - & H \ Cl \ - \ O \\
g. - & CH_2OH \ Cl \ Cl \ N(CH_3)_2 \ O
\end{array}
\]

In 2 or more tests the Rosa et al [35] synthesized a new series of 1,2,4-triazoles (36) and (37) and tested them against several NNRTI resistant HIV-1 isolates. Several of these compounds exhibited potent antiviral activities against efavirenz and nevirapine resistant viruses containing K103N, and/or Y181C mutations or Y188L mutation.

\[
R \quad R_1 \quad R_2
\]

Substitution at 4th position of triazole with substituted quinoline resulted in compounds with moderate activity.

A series of 3, 4, 5-trisubstituted 4H-1,2,4-triazoles (38) and a related series of 3H-imidazo[1,2-b][1,2,4]triazoles (38) were synthesised by Wallace et al [36] and were evaluated in vitro and in vivo as angiotensin II (A II) antagonists. Compound with noteworthy activity was 3n-butyl-5-[(2-carboxybenzyl)thio]-4-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]-4H-1,2,4-triazole (38). IC_{50} 1.4 nM, which blocked the AII pressor response in conscious rats, similar to that of DUP 753.

\[
R_5=CH_3 \quad R_6=CH_3
\]
Most potent among the bicyclic derivatives was 2-n-butyl-5,6-dimethyl-3-[[2’-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]3H-imidazol[1,2-b][1,2,4] triazole (39a, IC$_{50}$ 7.8nM).

1, 3, 4, 5-Tetrasubstituted-1, 2, 4-Triazole
Nasser et al [37] revealed that glucosidation of some 4-amino- and 4-arylideneamino-5-(pyridin-3-yl)-2,4-dihydro-[1, 2, 4]-triazole-3-thiones with 2, 3, 4, 6-tetra-o-acetyl-α-D-glucopyranosyl bromide followed by a chromatographic separation gave the corresponding N- and S-β-D-glucosides. Compound 40a showed higher inhibitory effect against Aspergillus fumigatus, Candida albicans, Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, compared to compound 41a.

[Chemical structures of 40a, 41a, and 42]

Compound 40b showed higher inhibitory effect against Aspergillus fumigatus, Candida albicans, Pseudomonas aeruginosa, and Escherichia coli, compared to compound 41b. Compound 42 exhibited higher inhibitory effect against Aspergillus fumigatus, Penicillium italicum, Pseudomonas aeruginosa, and Bacillus subtilis as well as lower inhibitory effect against Syncephalastrum racemosum.

2, 3, 4, 5-tetrasubstituted-1, 2, 4-Triazole
Li et al [38] synthesized a series of D-glucopyranosyl-1, 2, 4-triazole-3-thione derivatives (43a–d). The Schiff bases thus obtained subsequently afforded the compounds 44 with the similar substituents as inserted in its previous congeners. Analogues 43 and 44 exhibited cytotoxic activity against human MCF-7 and Bel-7402 malignant cell lines. The glycosyl esters 43a–d showed similar activity against MCF-7 and Bel-7402 cells when compared to 5-fluorouracil.
Compounds 43a-d showed higher antiproliferative activity as compared to Schiff bases 44a–d. Interestingly, 43c showed more potent cytotoxic activity against MCF-7 cells being 2.7-fold more potent than the reference compound 30c.

Fused Ring System

Holla et al. [39] reported the synthesis of a series of bis-[4-amino-5-mercapto-1, 2, 4-triazol-3-yl] alkanes which were converted into bis-[1, 2, 4-triazolo[3, 4-b]-1,3,4-thiadiazol-4-yl] alkanes.

Compounds 45a and 46a were the most active and particularly showed very good activity against *B. subtilis*.

Shiradkar et al. [40] based on their earlier in-house database and compound library designed a series of novel clubbed thieryl triazoles (47-54) considered to be potential cdk5/p25 inhibitors for the treatment of Alzheimer’s disease.
Following their studies, compounds (47-54) were considered as significant cdk5/p25 inhibitors and thus had the potential to be a possible remedy for Alzheimer's disease.

SULPHONAMIDE LINKED TRIAZOLES

The best antifungal potential could be seen for few members of triazole series, whereas compounds 55(a-f), 55i and 55k possessed better antibacterial activity than ampicillin against *Enterobacter cloacae* and *S. typhimurium*. All compounds tested showed stronger antibacterial potential than ampicillin against *E. coli* and *P. aeruginosa*. The outcome of their work depicted that increase of the length of aliphatic chain increased lipophilicity which is mandatory for antibacterial activity. On the other hand, larger alkyl groups (butyl/t-butyl/iso-propyl) gave better results against fungi. Triazole-3-thiones exhibited best activities against all fungal species.

CONCLUSION

Great strides have been made in improving the quality of life of individuals affected with so many disorders. The current review clearly demonstrates that there is
a huge range in the structural diversity of compounds with the common core as 1,2,4-triazole, which have shown its robust therapeutic potential in combating various disorders. We hope the synthetic feasibility and suitable insertion into many other structural frameworks will surely prompt the researchers to synthesize a huge number of compounds considering 1,2,4-triazole as an effective scaffold, which will not only be useful in modulating the existing efficacy in a better way, but also may explore certain targets which are yet to be touched.

CONFLICT OF INTEREST
None

ACKNOWLEDGEMENT
The Author would convey his heartiest thanks to the management of Gupta College of Technological Sciences for their support during the making of this manuscript.

REFERENCES

34. Gall M., Hester J.B., Rudzik A.D. Lahti, R. A. 67. Gall, M.; Hester J. B.; Rudzik, A. D.; Lahti R.A. Synthesis and pharmacology of novel anxiolytic agents derived from 2-(dialkylamino)methyl-4H-triazol-4-

39. Holla B.S., Goncalves R., Shenoy S. Studies on some N-bridged heterocycles derived from bis-[4-amino-5-mercapto-1,2,4-triazol-3-yl] alkanes. IL Farmaco. 1998; 53:574-578.

How to cite this article: Subhasis Banerjee*1 Swastika Ganguly2, Kalyan Kumar Sen1; A Review on 1, 2, 4 - Triazoles; J. Adv. Pharm. Edu. & Res. 2013: 3(3): 102-115.

Source of Support: Nil, Conflict of Interest: Nil